Новая подборка новостей мира науки и техники 11-12-2016
Создан "липкий" материал, сохраняющий свойства при экстремально низких и при экстремально высоких температурах

адгезивный материал
Исследователи из Университета западного резервного района Кейс (Case Western Reserve University) создали новый тип сухого двухстороннего адгезивного материала (липкого пластыря), который сохраняет свои свойства при экстремально низких температурах и становится еще более липким при повышении температуры окружающей среды. Основой этого материала являются углеродные нанотрубки, которые упорядочены в вертикальном направлении и "завязаны в своеобразные узлы" так, что их концы работают подобно волосинкам на конечностях геккона.
Большинство адгезивных материалов, которые вы можете купить в ближайшем магазине, теряют свои липкие свойства при низкой или, наоборот, при высокой температуре окружающей среды. Новый же "нанотрубочный" пластырь сохраняет свои липкие свойства при температуре -196 градусов Цельсия (температура кипения жидкого азота). При увеличении температуры до 418 градусов Цельсия, сила прилипания пластыря к поверхности увеличивается в два раза и в шесть раз при увеличении температуры до 1000 градусов.

структура материала
Для того, чтобы наблюдать за происходящими в материале процессами, исследователи использовали мощный растровый электронный микроскоп. Было выяснено, что при увеличении температуры в материале формируются сети из нанотрубок, которые обеспечивают большую площадь контакта с поверхностью и большие силы "прилипания", основанные на физических силах Ван-дер-Ваальса. Кроме этого, при большей температуре материал обладает большей эластичностью, что позволяет нанотрубкам проникать вглубь микротрещин, углублений и прочих особенностей поверхности.
Столь широкий диапазон температур, при которых новый пластырь сохраняет свои свойства, делает его весьма перспективным материалом для использования в космосе и там, где в силу разных причин температура окружающей среды может меняться на несколько сот градусов в течение короткого времени. Кроме этого, материал пластыря является тепло- и электропроводным, что также увеличивает количество областей его применения.
"Этот пластырь может использоваться в качестве клеящего материала в космической технике и в электронике, способной работать при высоких температурах" - рассказывает профессор Лиминг Дэй (Liming Dai), - "При нормальной температуре нанотрубочный пластырь обеспечивает такое же прилипание, как и самые лучшие образцы коммерческих адгезивных материалов. При этом, он одинаково хорошо липнет к бумаге, дереву, пластмассе, металлу и к покрашенным стенкам. Его можно будет использовать даже в роботах, способных перемещаться по вертикальным поверхностям".
Источник
Селенид индия - новый материал из разряда "удивительных" двухмерных материалов

структура селенида индия
Манчестерский университет в Великобритании является одним из ведущих в мире научных учреждений, в стенах которого проводятся исследования графена и других двухмерных материалов. Мало того, что в этом университете работают Андрей Гейм и Константин Новоселов, ученые, ставшие в 2010 году Лауреатами Нобелевской премии в области физики за открытие графена, сейчас в окрестностях университетского городка производится строительство специализированной экспериментальной установки, стоимостью в 71 миллион долларов. По завершению строительства эта установка поступить в распоряжение недавно организованного Национального института исследований графена (National Graphene Institute, NGI).
Помимо графена манчестерские ученые занимаются исследованиями ряда других двухмерных материалов. И одним из последних объектов их исследований стал селенид индия (InSe), который является весьма перспективным материалом для его использования в сверхтонкой и сверхбыстродействующей электронике. "Сверхтонкий селенид индия является своего рода "золотой серединой" между кремнием и графеном" - рассказывает Андрей Гейм, - "Подобно графену этот материал имеет очень тонкую структуру, толщина которой измеряется нанометрами. И он является замечательным полупроводником, подобно кремнию".
Полупроводниковые свойства являются "ахиллесовой пятой" графена. У этого материала отсутствует так называемая естественная запрещенная зона, что значительно уменьшает полезность материала, несмотря на высокую подвижность электронов в его среде. Вид селенида индия, созданный в лаборатории Манчестерского университета, имеет достаточно широкую запрещенную зону, что позволяет избежать использования дополнительных уловок, отрицательно сказывающихся на подвижности электронов, как в случае графена.
Исследования, проведенные учеными, показали, что селенид индия при комнатной температуре обладает подвижностью электронов, равной 2000 см^2/(В*с), что существенно превышает аналогичный показатель кремния и превышает показатели некоторых материалов-халькогенидов. А ширина запрещенной зоны у селенида индия составляет 0.5 электронвольта.
Но, в случае с селенидом индия присутствует одно большое "НО". Как ни старались исследователи обеспечить надлежащие условия окружающей среды для синтеза селенида индия, им не удалось полностью избавиться от разрушающего действия кислорода и водяных паров. Проблема была решена в большей степени путем проведения процедуры синтеза в атмосфере аргона. Это, в свою очередь, обуславливает некоторые трудности в случае разработки технологий массового производства нового материала.
И в любом случае, появление на арене селенида индия вовсе не означает, что графену "дали пинка под зад". В настоящее время уже разработаны технологии производства больших листов графена, на исследование свойств этого материала и областей его применения было потрачено больше десятилетия работы различных научных групп. И бросать это все "коту под хвост" никто не собирается, тем более, что графен может быть использован для получения селенида индия в промышленных масштабах.
Источник
Углеродные нанотрубки превращают воду в лед при температуре выше точки ее кипения

вода внутри углеродной нанотрубки
Любому школьнику известно, что при нормальных условиях вода замерзает при температуре в 0 градусов Цельсия и кипит при температуре в 100 градусов. Однако, исследователи из Массачусетского технологического института обнаружили, что вода, находящаяся внутри полости крошечных углеродных нанотрубок, может находиться в замороженном состоянии при температурах, значительно превышающих точку ее кипения. Пока еще нельзя точно сказать, к каким последствиям могут привести результаты данных исследования. Столь экзотическое состояние воды может быть использовано для создания не менее экзотических вещей, таких, как "ледяные" нанопроводники с протонной проводимостью, к примеру.
Известно, что температура является не единственным фактором, определяющим точку перехода между различными агрегатными состояниями воды. На это дело оказывает большое влияние давление, понижение которого заставляет воду кипеть при более низкой температуре. Более того, ученым уже некоторое время было известно, что вода начинает вести себя крайне странно, когда она ограничена чем-то, размеры чего исчисляются нанометрами. Ранее в этом году ученые из Национальной лаборатории Ок-Ридж (Oak Ridge National Laboratory, ORNL) даже обнаружили четвертое агрегатное состояние воды, молекулы которой были помещены внутрь крошечных каналов.
"Если жидкость поместить в какую-нибудь наноразмерную "емкость", ее поведение по отношению к фазовым переходам кардинально изменится" - рассказывает Майкл Страно (Michael Strano), ведущий исследователь, - "И этот эффект оказался намного сильнее, чем мы ожидали".
Все наблюдения за молекулами воды проводились при помощи технологии вибрационной спектросопии, которая позволяет определить параметры движения молекул и, как следствие, в каком из агрегатных состояний находится исследуемое вещество.
Перед началом исследований ученые ожидали увидеть не очень большие изменения температуры кипения и замерзания воды. Однако, на практике ученые зарегистрировали нечто, совершенно обратное их ожиданиям, вместо ожидаемого понижения, температура точки замерзания воды переместилась значительно выше. Вода, находящаяся внутри полости углеродных нанотрубок, находилась в замороженном состоянии в диапазоне от 105 до 151 градусов Цельсия. Сначала ученые пытались объяснить наблюдаемые ими эффекты малой точностью производимых измерений и погрешностью экспериментов. Однако, после самых тщательных проверок было выяснено, что измерение диаметра нанотрубок на 0.01 нанометра приводит к смещению точки замерзания воды на десятки градусов.
То, что вода внутри нанотрубок находилась в замерзшем состоянии, еще не значит, что она превратилась в обычный лед. Несмотря на все усилия и использованные технологии, ученые не смогли получить подтверждения существования внутри нанотрубки кристаллической структуры, соответствующей структуре обычного прозрачного льда.
Еще одним интересным моментом, который продолжает оставаться загадкой для ученых, является то, как молекулы воды проникли внутрь углеродных нанотрубок, учитывая то, что нанотрубки являются супергидрофобным (водоотталкивающим) материалом?
Так как данное направление науки можно назвать "неизведанным краем", ученые еще не знают, как можно использовать на практике этот странный материал? Однако, уже высказаны предположения, что замерзшая при комнатной температуре вода может стать основой так называемых "ледяных проводников", которые смогут стать проводниками для протонов и иметь протонную проводимость в десятки раз лучше, чем у любого из других существующих материалов.
Источник
Создана наноантенна, способная изменить направление распространения света, не затрагивая его параметров

структура наноантенны
Группа российских и американских ученых из Санкт-Петербургского национального исследовательского университета информационных технологий, механики и оптики (ИТМО), Московского физико-технического института (МФТИ) и Техасского университета в Остине разработала новую технологию, позволяющую управлять направлением распространения света, не затрагивая основных параметров этого света. Ключевым моментом этой технологии является крошечная наноантенна, которая в будущем может стать одним из стандартных блоков оптических компьютеров или коммуникационных систем.
В основе принципов оптических вычислений лежит замена электронов фотонами света, которые становятся носителями информации. Однако, управлять движением фотонов намного тяжелее, чем движением электронов, ведь у первых не имеется ни электрического заряда, ни массы покоя. А для реализации полноценных технологий оптических вычислений для управления потоками фотонов потребуются полные аналоги электронных компонентов, таких, как транзисторы, диоды и т.п.
Управлять распространением лучей света можно при помощи традиционных волноводов, но новая наноантенна работает совершенно иным способом. Вместо искривления траектории движения фотонов она отражает падающие на нее фотоны строго в определенном направлении, которое определяется материалом и формой этой антенны. Антенна представляет собой кусочек кремния определенной формы, размером 200 на 200 и на 500 нанометров. Ее основной особенностью является то, что угол отражения ею света зависит от интенсивности падающего на нее луча.
"Все это позволит нам управлять направлением распространения света намного более простым способом, чем это позволяют делать любые другие методы, основанные на использовании магнитных, электрических полей и электронного управления" - рассказывает Сергей Макаров, старший научный сотрудник института ИТМО.
Наноантенна отражает свет при помощи поверхностных плазмонов, облаков свободных электронов, возникающих на поверхности некоторых материалов под воздействием падающего на них света. Интенсивность падающего света определяет размеры и плотность облаков электронов и в результате этого антенна способна отражать свет на определенный угол, лежащий в пределах 20 угловых градусов. Помимо этого, для увеличения эффективности отклонения луча света, плазмоны должны резонировать с определенной частотой, соответствующей частоте падающего света. Это, в свою очередь, достигается путем изменения размеров наноантенны на этапе ее производства.
Согласно имеющейся информации, новая наноантенна может стать основой устройства, способного обеспечить передачу данных со скоростью 250 гигабит в секунду. Таким образом, устройства на базе таких антенн могут стать промежуточным звеном между оптическими системами, которые позволяют передавать данные по кабелям со скоростью в сотни гигабит в секунду, и электронными элементами вычислительных систем, которые могут принимать и обрабатывать гораздо меньшие потоки данных.
Источник
Созданы наноразмерные "мускулы" приводимые в действие цепочками молекул ДНК

мускулы на основе ДНК
Пары оснований, из которых состоят цепочки молекул ДНК, являются не только способом кодирования заключенной в этих молекулах генетической информации. Последовательность чередования этих оснований придает молекуле некоторые из ее уникальных физических и химических свойств, которые можно использовать в самых различных целях. К примеру, исследователи из Пенсильванского университета, используя механические свойства молекул ДНК, создали крошечные наноразмерные "мускулы", которые могут приводить в действие и перемещать машины и механизмы молекулярного масштаба.
В качестве примера такого использования ДНК пенсильванские исследователи включили структуры из упорядоченных особым образом наномускулов в состав тонкой пленки. Эта пленка обрела способность изгибаться сворачиваться и заворачиваться в спираль под воздействием определенных внешних факторов, а форма и структура использованных молекул ДНК определяла вид совершаемого движения.
Наноразмерные "мускулы" состоят из золотых наночастиц, связанных друг с другом одной, двумя или большим количеством коротких цепочек молекул ДНК. Помимо количества цепочек, связывающих наночастицы, ученые использовали цепочки ДНК с различными последовательностями оснований. Под воздействием внешних факторов, кислотности среды, к примеру, определенные цепочки ДНК сокращались, а другие - свивались в тугую спираль, что позволило этим наномускулам развивать достаточное усилие.

схема наномускул
Помимо воздействия, которое заставляло сокращаться молекулы ДНК, ученые нашли ряд воздействий на эти молекулы, оказывающих обратное действие. И, как нетяжело догадаться, чередуя различные виды воздействий, можно заставить наноразмерные "мускулы" периодически сокращаться и выполнять какую-то полезную работу.
Созданные учеными пленки с наноразмерными "мускулами" являются лишь доказательством работоспособности новой идеи. Но ничего не мешает тому, чтобы подобные методы могли быть использованы в практических целях уже прямо сейчас.
"В более дальней перспективе мы думаем о возможности создания наномеханизмов, способных работать прямо внутри живых клеток и там, где условия не позволяют использовать традиционные подходы, такие как провода или беспроводное управление" - пишут исследователи, - "Скоро мы сможем сделать устройство с элементами, которые будут чувствительны к свету с определенной длиной волны. И такое устройство станет чем-то вроде химического преобразователя, обеспечивающего управление ДНК-мускулами при помощи лучей света и получение информации о ходе протекающих внутри организма процессов".
Источник

адгезивный материал
Исследователи из Университета западного резервного района Кейс (Case Western Reserve University) создали новый тип сухого двухстороннего адгезивного материала (липкого пластыря), который сохраняет свои свойства при экстремально низких температурах и становится еще более липким при повышении температуры окружающей среды. Основой этого материала являются углеродные нанотрубки, которые упорядочены в вертикальном направлении и "завязаны в своеобразные узлы" так, что их концы работают подобно волосинкам на конечностях геккона.
Большинство адгезивных материалов, которые вы можете купить в ближайшем магазине, теряют свои липкие свойства при низкой или, наоборот, при высокой температуре окружающей среды. Новый же "нанотрубочный" пластырь сохраняет свои липкие свойства при температуре -196 градусов Цельсия (температура кипения жидкого азота). При увеличении температуры до 418 градусов Цельсия, сила прилипания пластыря к поверхности увеличивается в два раза и в шесть раз при увеличении температуры до 1000 градусов.

структура материала
Для того, чтобы наблюдать за происходящими в материале процессами, исследователи использовали мощный растровый электронный микроскоп. Было выяснено, что при увеличении температуры в материале формируются сети из нанотрубок, которые обеспечивают большую площадь контакта с поверхностью и большие силы "прилипания", основанные на физических силах Ван-дер-Ваальса. Кроме этого, при большей температуре материал обладает большей эластичностью, что позволяет нанотрубкам проникать вглубь микротрещин, углублений и прочих особенностей поверхности.
Столь широкий диапазон температур, при которых новый пластырь сохраняет свои свойства, делает его весьма перспективным материалом для использования в космосе и там, где в силу разных причин температура окружающей среды может меняться на несколько сот градусов в течение короткого времени. Кроме этого, материал пластыря является тепло- и электропроводным, что также увеличивает количество областей его применения.
"Этот пластырь может использоваться в качестве клеящего материала в космической технике и в электронике, способной работать при высоких температурах" - рассказывает профессор Лиминг Дэй (Liming Dai), - "При нормальной температуре нанотрубочный пластырь обеспечивает такое же прилипание, как и самые лучшие образцы коммерческих адгезивных материалов. При этом, он одинаково хорошо липнет к бумаге, дереву, пластмассе, металлу и к покрашенным стенкам. Его можно будет использовать даже в роботах, способных перемещаться по вертикальным поверхностям".
Источник
Селенид индия - новый материал из разряда "удивительных" двухмерных материалов

структура селенида индия
Манчестерский университет в Великобритании является одним из ведущих в мире научных учреждений, в стенах которого проводятся исследования графена и других двухмерных материалов. Мало того, что в этом университете работают Андрей Гейм и Константин Новоселов, ученые, ставшие в 2010 году Лауреатами Нобелевской премии в области физики за открытие графена, сейчас в окрестностях университетского городка производится строительство специализированной экспериментальной установки, стоимостью в 71 миллион долларов. По завершению строительства эта установка поступить в распоряжение недавно организованного Национального института исследований графена (National Graphene Institute, NGI).
Помимо графена манчестерские ученые занимаются исследованиями ряда других двухмерных материалов. И одним из последних объектов их исследований стал селенид индия (InSe), который является весьма перспективным материалом для его использования в сверхтонкой и сверхбыстродействующей электронике. "Сверхтонкий селенид индия является своего рода "золотой серединой" между кремнием и графеном" - рассказывает Андрей Гейм, - "Подобно графену этот материал имеет очень тонкую структуру, толщина которой измеряется нанометрами. И он является замечательным полупроводником, подобно кремнию".
Полупроводниковые свойства являются "ахиллесовой пятой" графена. У этого материала отсутствует так называемая естественная запрещенная зона, что значительно уменьшает полезность материала, несмотря на высокую подвижность электронов в его среде. Вид селенида индия, созданный в лаборатории Манчестерского университета, имеет достаточно широкую запрещенную зону, что позволяет избежать использования дополнительных уловок, отрицательно сказывающихся на подвижности электронов, как в случае графена.
Исследования, проведенные учеными, показали, что селенид индия при комнатной температуре обладает подвижностью электронов, равной 2000 см^2/(В*с), что существенно превышает аналогичный показатель кремния и превышает показатели некоторых материалов-халькогенидов. А ширина запрещенной зоны у селенида индия составляет 0.5 электронвольта.
Но, в случае с селенидом индия присутствует одно большое "НО". Как ни старались исследователи обеспечить надлежащие условия окружающей среды для синтеза селенида индия, им не удалось полностью избавиться от разрушающего действия кислорода и водяных паров. Проблема была решена в большей степени путем проведения процедуры синтеза в атмосфере аргона. Это, в свою очередь, обуславливает некоторые трудности в случае разработки технологий массового производства нового материала.
И в любом случае, появление на арене селенида индия вовсе не означает, что графену "дали пинка под зад". В настоящее время уже разработаны технологии производства больших листов графена, на исследование свойств этого материала и областей его применения было потрачено больше десятилетия работы различных научных групп. И бросать это все "коту под хвост" никто не собирается, тем более, что графен может быть использован для получения селенида индия в промышленных масштабах.
Источник
Углеродные нанотрубки превращают воду в лед при температуре выше точки ее кипения

вода внутри углеродной нанотрубки
Любому школьнику известно, что при нормальных условиях вода замерзает при температуре в 0 градусов Цельсия и кипит при температуре в 100 градусов. Однако, исследователи из Массачусетского технологического института обнаружили, что вода, находящаяся внутри полости крошечных углеродных нанотрубок, может находиться в замороженном состоянии при температурах, значительно превышающих точку ее кипения. Пока еще нельзя точно сказать, к каким последствиям могут привести результаты данных исследования. Столь экзотическое состояние воды может быть использовано для создания не менее экзотических вещей, таких, как "ледяные" нанопроводники с протонной проводимостью, к примеру.
Известно, что температура является не единственным фактором, определяющим точку перехода между различными агрегатными состояниями воды. На это дело оказывает большое влияние давление, понижение которого заставляет воду кипеть при более низкой температуре. Более того, ученым уже некоторое время было известно, что вода начинает вести себя крайне странно, когда она ограничена чем-то, размеры чего исчисляются нанометрами. Ранее в этом году ученые из Национальной лаборатории Ок-Ридж (Oak Ridge National Laboratory, ORNL) даже обнаружили четвертое агрегатное состояние воды, молекулы которой были помещены внутрь крошечных каналов.
"Если жидкость поместить в какую-нибудь наноразмерную "емкость", ее поведение по отношению к фазовым переходам кардинально изменится" - рассказывает Майкл Страно (Michael Strano), ведущий исследователь, - "И этот эффект оказался намного сильнее, чем мы ожидали".
Все наблюдения за молекулами воды проводились при помощи технологии вибрационной спектросопии, которая позволяет определить параметры движения молекул и, как следствие, в каком из агрегатных состояний находится исследуемое вещество.
Перед началом исследований ученые ожидали увидеть не очень большие изменения температуры кипения и замерзания воды. Однако, на практике ученые зарегистрировали нечто, совершенно обратное их ожиданиям, вместо ожидаемого понижения, температура точки замерзания воды переместилась значительно выше. Вода, находящаяся внутри полости углеродных нанотрубок, находилась в замороженном состоянии в диапазоне от 105 до 151 градусов Цельсия. Сначала ученые пытались объяснить наблюдаемые ими эффекты малой точностью производимых измерений и погрешностью экспериментов. Однако, после самых тщательных проверок было выяснено, что измерение диаметра нанотрубок на 0.01 нанометра приводит к смещению точки замерзания воды на десятки градусов.
То, что вода внутри нанотрубок находилась в замерзшем состоянии, еще не значит, что она превратилась в обычный лед. Несмотря на все усилия и использованные технологии, ученые не смогли получить подтверждения существования внутри нанотрубки кристаллической структуры, соответствующей структуре обычного прозрачного льда.
Еще одним интересным моментом, который продолжает оставаться загадкой для ученых, является то, как молекулы воды проникли внутрь углеродных нанотрубок, учитывая то, что нанотрубки являются супергидрофобным (водоотталкивающим) материалом?
Так как данное направление науки можно назвать "неизведанным краем", ученые еще не знают, как можно использовать на практике этот странный материал? Однако, уже высказаны предположения, что замерзшая при комнатной температуре вода может стать основой так называемых "ледяных проводников", которые смогут стать проводниками для протонов и иметь протонную проводимость в десятки раз лучше, чем у любого из других существующих материалов.
Источник
Создана наноантенна, способная изменить направление распространения света, не затрагивая его параметров

структура наноантенны
Группа российских и американских ученых из Санкт-Петербургского национального исследовательского университета информационных технологий, механики и оптики (ИТМО), Московского физико-технического института (МФТИ) и Техасского университета в Остине разработала новую технологию, позволяющую управлять направлением распространения света, не затрагивая основных параметров этого света. Ключевым моментом этой технологии является крошечная наноантенна, которая в будущем может стать одним из стандартных блоков оптических компьютеров или коммуникационных систем.
В основе принципов оптических вычислений лежит замена электронов фотонами света, которые становятся носителями информации. Однако, управлять движением фотонов намного тяжелее, чем движением электронов, ведь у первых не имеется ни электрического заряда, ни массы покоя. А для реализации полноценных технологий оптических вычислений для управления потоками фотонов потребуются полные аналоги электронных компонентов, таких, как транзисторы, диоды и т.п.
Управлять распространением лучей света можно при помощи традиционных волноводов, но новая наноантенна работает совершенно иным способом. Вместо искривления траектории движения фотонов она отражает падающие на нее фотоны строго в определенном направлении, которое определяется материалом и формой этой антенны. Антенна представляет собой кусочек кремния определенной формы, размером 200 на 200 и на 500 нанометров. Ее основной особенностью является то, что угол отражения ею света зависит от интенсивности падающего на нее луча.
"Все это позволит нам управлять направлением распространения света намного более простым способом, чем это позволяют делать любые другие методы, основанные на использовании магнитных, электрических полей и электронного управления" - рассказывает Сергей Макаров, старший научный сотрудник института ИТМО.
Наноантенна отражает свет при помощи поверхностных плазмонов, облаков свободных электронов, возникающих на поверхности некоторых материалов под воздействием падающего на них света. Интенсивность падающего света определяет размеры и плотность облаков электронов и в результате этого антенна способна отражать свет на определенный угол, лежащий в пределах 20 угловых градусов. Помимо этого, для увеличения эффективности отклонения луча света, плазмоны должны резонировать с определенной частотой, соответствующей частоте падающего света. Это, в свою очередь, достигается путем изменения размеров наноантенны на этапе ее производства.
Согласно имеющейся информации, новая наноантенна может стать основой устройства, способного обеспечить передачу данных со скоростью 250 гигабит в секунду. Таким образом, устройства на базе таких антенн могут стать промежуточным звеном между оптическими системами, которые позволяют передавать данные по кабелям со скоростью в сотни гигабит в секунду, и электронными элементами вычислительных систем, которые могут принимать и обрабатывать гораздо меньшие потоки данных.
Источник
Созданы наноразмерные "мускулы" приводимые в действие цепочками молекул ДНК

мускулы на основе ДНК
Пары оснований, из которых состоят цепочки молекул ДНК, являются не только способом кодирования заключенной в этих молекулах генетической информации. Последовательность чередования этих оснований придает молекуле некоторые из ее уникальных физических и химических свойств, которые можно использовать в самых различных целях. К примеру, исследователи из Пенсильванского университета, используя механические свойства молекул ДНК, создали крошечные наноразмерные "мускулы", которые могут приводить в действие и перемещать машины и механизмы молекулярного масштаба.
В качестве примера такого использования ДНК пенсильванские исследователи включили структуры из упорядоченных особым образом наномускулов в состав тонкой пленки. Эта пленка обрела способность изгибаться сворачиваться и заворачиваться в спираль под воздействием определенных внешних факторов, а форма и структура использованных молекул ДНК определяла вид совершаемого движения.
Наноразмерные "мускулы" состоят из золотых наночастиц, связанных друг с другом одной, двумя или большим количеством коротких цепочек молекул ДНК. Помимо количества цепочек, связывающих наночастицы, ученые использовали цепочки ДНК с различными последовательностями оснований. Под воздействием внешних факторов, кислотности среды, к примеру, определенные цепочки ДНК сокращались, а другие - свивались в тугую спираль, что позволило этим наномускулам развивать достаточное усилие.

схема наномускул
Помимо воздействия, которое заставляло сокращаться молекулы ДНК, ученые нашли ряд воздействий на эти молекулы, оказывающих обратное действие. И, как нетяжело догадаться, чередуя различные виды воздействий, можно заставить наноразмерные "мускулы" периодически сокращаться и выполнять какую-то полезную работу.
Созданные учеными пленки с наноразмерными "мускулами" являются лишь доказательством работоспособности новой идеи. Но ничего не мешает тому, чтобы подобные методы могли быть использованы в практических целях уже прямо сейчас.
"В более дальней перспективе мы думаем о возможности создания наномеханизмов, способных работать прямо внутри живых клеток и там, где условия не позволяют использовать традиционные подходы, такие как провода или беспроводное управление" - пишут исследователи, - "Скоро мы сможем сделать устройство с элементами, которые будут чувствительны к свету с определенной длиной волны. И такое устройство станет чем-то вроде химического преобразователя, обеспечивающего управление ДНК-мускулами при помощи лучей света и получение информации о ходе протекающих внутри организма процессов".
Источник
Новостной сайт E-News.su | E-News.pro. Используя материалы, размещайте обратную ссылку.
Оказать финансовую помощь сайту E-News.su | E-News.pro
Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter (не выделяйте 1 знак)





