Что мы можем извлечь из «черного ящика»? » Страница 3 » E-News.su | Cамые свежие и актуальные новости Новороссии, России, Украины, Мира, политика, аналитика
ЧАТ

Что мы можем извлечь из «черного ящика»?

17:41 / 28.06.2022
1 355
1
А теперь поговорим за жизнь (биология)

Похожая ситуация сложилась в биологии, где ученые также сталкиваются с огромным и многомерным пространством потенциальных структур, в первую очередь таких важных биологических молекул, как ДНК, РНК и белки. И точно так же трудно выяснить, как именно будет складываться молекула белка, если известен только состав и порядок входящих в нее аминокислот. Трехмерная структура белка определяет его свойства, поэтому этот вопрос всегда был актуальным для биологов. Машинное обучение помогло решить эту проблему.


Трехмерная реконструкция белкового комплекса c-FLIP

В 2015 году AlphaGo, программа DeepMind, обыграла сначала «белкового» чемпиона Европы по игре в го, а затем и чемпиона мира. Программа использовала глубокие нейронные сети и обучалась сначала на основе сыгранных людьми партий, но следующая версия программы играла уже сама с собой и самостоятельно наращивала свой уровень, уже без подсказок из игр между людьми.

Го потенциально содержит огромное пространство комбинаций, что роднит эту игру с проблемой сворачивания белка (фолдинга). Создатели AlphaGo решили проверить возможности своей программы в биологической области, обучив AlphaFold на базах данных об уже известных белковых структурах. Задача AlphaFold состояла в том, чтобы предсказать наиболее вероятные структуры белков, о которых ей известно лишь то, что они сворачиваются.

Программа продемонстрировала высокую точность в прогнозировании укладки белков, и для этого ей не требовалось вычислять кинетику или стабильность фолдинга. AlphaFold набрала 90 баллов из 100 в ежегодном конкурсе «Крупномасштабный эксперимент по предсказанию структуры белка» (CASP), после чего многие специалисты сочли проблему предсказания структуры белка в целом решенной.

AlphaFold продемонстрировала возможности машинного обучения в вопросе, который трудно решить другими методами. Центральным компонентом AlphaFold является нейронная сеть, которая обучена на очень большом количестве структур для предсказания расстояний между атомами. AlphaFold может стать полезной технологией, например для проектирования лекарств, где отправной точкой часто является знание структуры белка.

Как мы всех вылечим от всего. Ну почти! (медицина)

Путь от открытия лекарства до его выхода на рынок обходится в среднем более чем в 1 миллиард долларов США и может занять 12 лет и более. Много усилий уходит на поиск и разработку действующего вещества, и не меньше усилий требуется для того, чтобы убедиться, что препарат действительно работает на людях. Все дело в чрезвычайной сложности организма и взаимосвязей клеток, биомолекул, генов и других веществ. Эта сложность, как уже сказано, не поддается прямому анализу. Зато порой, как выяснилось, она поддается машинному обучению.


Генотипирование и секвенирование ДНК. Техник загружает робота для генетических исследований вируса папилломы человека (ВПЧ)

При этом в медицине наблюдается бурный рост доступности клинических данных, отражающих информацию на разных уровнях биологической сложности, таких как мультиомика, молекулярные пути, данные визуализации, электронные медицинские карты, а также данные с имплантируемых устройств и носимых датчиков. И все эти данные можно «скормить» машинному обучению, получив интересные результаты.

Машинное обучение уже широко используют в полногеномных ассоциативных исследованиях (GWAS), где информация о геноме увязана с признаками здоровья. Следующий шаг — дополнить анализ данными эпигенетики, протеомики, метаболомики и так далее. Это требует больших ресурсов, но отдача может быть высокой, поскольку машинное обучение способно справиться с разнородными и сложными данными, находя в них скрытые от человеческого взгляда взаимосвязи. Например, с помощью МО уже показано, что ответы на антидепрессанты или на лечение рака можно предсказать на основе геномики и клинических данных, что поможет пациентам избежать ненужных процедур, часто при этом сложных и дорогих.
В 2020 году коллаборация ученых Университета «МИСИС», Института русского языка им. В. В. Виноградова РАН и НИУ ВШЭ запустила масштабный проект по созданию с помощью технологий искусственного интеллекта и машинного обучения уникальной базы древнеславянских рукописных текстов — корпуса. Это даст исследователям-лингвистам и историкам мощный инструмент для изучения всех современных национальных славянских языков и культур и станет уникальным ключом к пониманию их наследия.

Методы машинного обучения все чаще применяют для скрининга лекарств, прогнозирования их свойств и поиска терапевтических мишеней. И есть определенная надежда, что МО поможет пролить свет на природу и развитие сложных заболеваний, таких как рак или болезнь Альцгеймера. Например, анализ более 11 тысяч опухолей 33 типов рака существенно улучшил понимание того, как рак мутирует из исходных клеток и какие факторы влияют на развитие опухоли. Глубокое понимание рака жизненно необходимо: многие лекарства разрабатывают на основе экспериментально подтвержденной гипотезы, которая может объяснить возможный механизм канцерогенеза, но игнорирует другие факты о болезни.

Машинное обучение в медицине поможет врачам принимать решения и улучшит диагностику и прогнозирование за счет выявления новых закономерностей. Проблема же заключается в том, как обеспечить интерпретируемость моделей глубокого обучения, так что тут предстоит еще большая работа.

Что у нас может не получиться?

Нейронная сеть получает данные на вход и выдает результат на выходе. Невозможно судить, верно ли она отражает реальность, если правильный ответ не известен заранее. Сам процесс «рассуждений» нейросети скрыт от нашего наблюдения (и даже само слово «рассуждения» мы должны поэтому забирать в кавычки) — недаром мы называем его «черным ящиком» — и для чувствительных областей вроде медицины или сферы безопасности это серьезная проблема, которую еще предстоит решить. Там необходима твердая уверенность, что нейросеть не пошла по ложному следу, что она уловила реальную закономерность, а не артефакт.

Методы машинного обучения все чаще применяют для скрининга лекарств, прогнозирования их свойств и поиска терапевтических мишеней. И есть определенная надежда, что МО поможет пролить свет на природу и развитие сложных заболеваний, таких как рак или болезнь Альцгеймера. Например, анализ более 11 тысяч опухолей 33 типов рака существенно улучшил понимание того, как рак мутирует из исходных клеток и какие факторы влияют на развитие опухоли. Глубокое понимание рака жизненно необходимо: многие лекарства разрабатывают на основе экспериментально подтвержденной гипотезы, которая может объяснить возможный механизм канцерогенеза, но игнорирует другие факты о болезни.

Машинное обучение в медицине поможет врачам принимать решения и улучшит диагностику и прогнозирование за счет выявления новых закономерностей. Проблема же заключается в том, как обеспечить интерпретируемость моделей глубокого обучения, так что тут предстоит еще большая работа.

Другой проблемой может быть приблизительный характер ответов в машинном обучении. Там, где неидеальные ответы допустимы, а ставки невелики, например при создании изображений или языковом переводе, методы машинного обучения демонстрируют свою мощь, и мы им можем сразу доверять. В диагностике или управлении автомобилем пойти на такой риск нельзя, поэтому глубокие нейронные сети все еще не произвели революцию в этих областях.

Кроме того, нейронные сети сильно зависят от качества данных, на которых они обучаются. Мусор на входе закономерно даст мусор на выходе, а чистые, качественные данные для обучения собрать в реальном мире трудно или же очень затратно. Кроме того, даже чистые данные могут сформировать у нейросети предвзятость, поскольку разные предубеждения и искажения могут присутствовать в обучающей выборке, пусть неявно.

Нет сомнений, что обученные нейросети эффективны в различении паттернов и поиске связей, но эти связи ассоциативны, они не обязаны указывать на причины и следствия. В некоторых случаях, особенно в науке, где поиск причин (а не корреляций) может быть целью, такое свойство машинного обучения будет считаться недостатком.

Не стоит забывать и о том, что глубокое обучение прожорливо. Хороший результат требует огромных объемов данных для обучения, а большие модели (например, языковые) требуют мощных вычислительных ресурсов и в конечном счете затрат энергии (и ресурсов). Это во многом ограничивает применение МО в различных отраслях.

Наконец, сети глубокого обучения способны ошибаться, причем иногда вопиюще глупо, вплоть до смешного. Это признак того, что на самом деле они не обладают пониманием, и уж тем более не мыслят и не познают мир, а всего лишь реагируют на паттерны в статистике. Это очень полезное умение, оно позволяет решать задачи определенного класса, но не стоит ждать от нейросетей того, что они дать не в состоянии. При грамотном применении у машинного обучения мощный потенциал, но будущим поколениям специалистов еще только предстоит его полностью раскрыть.
Источник
Предыдущая страница 1 2 3 Следующая страница

Новостной сайт E-News.su | E-News.pro. Используя материалы, размещайте обратную ссылку.

Оказать финансовую помощь сайту E-News.su | E-News.pro


          

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter (не выделяйте 1 знак)

Не забудь поделиться ссылкой

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
  1. +1
    Коллега
    Редакторы | 3 373 коммент | 295 публикаций | 28 июня 2022 18:14
    Не всё так однозначно. Будущее покажет.
    Показать
Информация
Комментировать статьи на сайте возможно только в течении 30 дней со дня публикации.