Новая подборка новостей мира науки и техники 12-04-2016 » E-News.su | Cамые свежие и актуальные новости Новороссии, России, Украины, Мира, политика, аналитика
ЧАТ

Новая подборка новостей мира науки и техники 12-04-2016

20:59 / 12.04.2016
2 099
0
Физики впервые подтвердили экспериментальным путем существование нелинейного вращательного эффекта Допплера

Новая подборка новостей мира науки и техники 12-04-2016
вращательный эффект Допплера

Профессор Томас Зентграф (Thomas Zentgraf), доктор Гуиксин Ли (Guixin Li) и профессор Шуэнг Занг (Shuang Zhang) из Бирмингемского университета (University of Birmingham) впервые в истории науки подтвердили экспериментальным путем существование нелинейного вращательного эффекта Доплера. Это событие произошло спустя почти 50 лет после того, как лауреат Нобелевской премии, голландец Николас Бломберген (Nicolaas Bloembergen) выдвинул теоретические обоснования возможности существования этого эффекта по отношению к свету.

Акустический эффект Доплера можно наблюдать каждый день в повседневной жизни. Он проявляется в виде изменения тональности звука сигнала или сирены автомобиля, двигающегося относительно человека-наблюдателя. Эффект заключается в том, что относительно наблюдателя длина волны звуковых колебаний сжимается, когда автомобиль движется к человеку, или, наоборот, растягивается, когда автомобиль удаляется от человека. Такой же эффект действует и по отношении к свету, по смещениям спектральных линий можно вычислить скорость движения далеких звезд относительно Земли.

В настоящее время эффект Доплера широко используется в различных устройствах и технологиях. При его помощи дорожные камеры измеряют скорость проезжающих мимо автомобилей, на базе этого эффекта работает навигационная система GPS, а при помощи ультразвука производятся измерения скорости движения жидкостей или газов в трубопроводах. Более того, квантовый эффект Доплера играет ключевую роль в некоторых квантовых технологиях, к примеру, в охлаждении до сверхнизких температур атомов вещества при помощи лазерного света.

Помимо обычного, линейного эффекта Доплера существует вращательный эффект, который возникает под воздействием вращательного движения объектов. Это приводит к изменениям длины волны в зависимости от скорости вращения и это может использоваться для измерения скорости вращения объектов различного уровня, от атомов и молекул до объектов астрономических масштабов.

В 1968 году, спустя несколько лет после изобретения лазера, Николас Бломберген выдвинул обоснование нелинейного вращательного эффекта Доплера, который проявляется достаточно сильно при освещении вращающихся объектов светом лазера с высокой интенсивностью. И вот только недавно, спустя почти 50 лет, ученые-физики впервые продемонстрировали в лаборатории этот эффект.

"Из-за малой длины волны света, нелинейные изменения от эффекта очень трудно зарегистрировать даже при помощи высокочувствительного лабораторного оборудования" рассказывает Томас Зентграф, - "Малое влияние эффекта происходит из-за огромной разницы скорости вращения объекта и скорости распространения света. Изменения длины волны света, прошедшей сквозь вращающийся объект, находятся в диапазоне нескольких триллионных долей от длины волны. И даже в лаборатории зарегистрировать такие изменения крайне и крайне тяжело".

Для измерения смещения длины волны света ученые использовали явление интерференции, своего рода состояние квантовой суперпозиции между двумя запутанными фотонами света. Измерение величины интерференции позволило ученым определить изменение длины волны света, вызванное вращательным эффектом Доплера.

Подтверждение существования фундаментального физического эффекта, нелинейного вращательного эффекта Доплера, представляет собой важный шаг в деле проверки некоторых существующих теорий. И одна из таких теорий уже была успешно подтверждена экспериментаторами из университета Падерборна (University of Paderborn). А в будущем нелинейный вращательный эффект Доплера может найти широкое применение в области исследований поведения жидкостей и газов, в исследованиях плазмы и в исследованиях свойств молекул различных веществ.

Источник

Новый оптомеханический трансдьюсер позволяет связать воедино свет, радиоволны и звуковые колебания

Новая подборка новостей мира науки и техники 12-04-2016
волновые колебания

Исследователи из американского Национального Института Стандартов и Технологий (National Institute of Standards and Technology, NIST) создали пьезо-оптомеханическое устройство, способное выполнять преобразование оптических, акустических и радиосигналов в любой комбинации и в любом направлении. Это устройство может стать основой систем, при помощи которых будет производиться передача и хранение информации в компьютерах следующих поколений, включая фотонные и квантовые компьютеры.

Нашим постоянным читателям наверняка известно понятие закона Гордона Мура, который определяет то, что количество транзисторов и вычислительная мощность микропроцессоров удваивается каждые два года. Но в последнее время размеры транзисторов, за счет чего осуществляется увеличение их числа и увеличение производительности процессоров, приблизилось к пределам, определяемым некоторыми физическими законами. Поэтому исследователи находятся в поисках альтернативных методов передачи и обработки информации, и одним из таких методов является использование света и акустических колебаний. Но говорить о практическом использовании нетрадиционных сред в качестве носителей информации можно будет лишь после того, как будут созданы устройства, выполняющие эффективное преобразование сигналов одного типа в другой.

Именно таким устройством-преобразователем и является созданное учеными NIST пьезо-оптомеханическое устройство. Его основой является "оптомеханическая впадина", роль которой выполняет наноразмерная "стоячая" волна луча света. В районе этого луча создано несколько отверстий, которые выступают в роли зеркальных ловушек для фотонов. Фотоны света определенной частоты отражаются тысячи раз от этих зеркал, прежде чем им удается покинуть пределы луча, а расстояние между зеркалами ограничивает частоту механических колебаний, создаваемых отражаемыми фотонами, миллиардами циклов в секунду (гигагерцами). Фотоны и кванты механических колебаний, фононы, постоянно обмениваются энергией, что позволяет наращивать количество фотонов, пойманных в ловушку, а увеличение количества фотонов приводит к увеличению амплитуды механических колебаний. Силы этого обоюдного взаимодействия или сцепления являются самыми сильными среди всех созданных ранее оптомеханических систем.

Одним из главных моментов устройства являются акустические волноводы, присоединенные к оптической ловушке, которые направляют фононы акустических колебаний по заданному пути. Направляя созданные снаружи фононы в район оптической впадины, можно управлять параметрами движения наноразмерного луча света. А накачивая оптическую ловушку фотонами с определенными характеристиками, можно превратить устройство в генератор фононов.

Кроме этого, в состав устройства включены элементы из пьезоэлектрического материала, который под воздействием переменного электрического поля может создавать механические колебания очень высокой частоты. А специальный элемент-преобразователь (interdigitated transducer, IDT) позволяет увеличить эффективность пьезоэлектрического эффекта. При помощи этих элементов реализована взаимосвязь между радиоволнами и акустическими колебаниями, которые можно использовать в качестве самостоятельных носителей информации или для управления потоком излучаемого устройством света.

Созданное учеными устройство позволяет реализовать даже самые экзотические варианты преобразования типов сигналов. К примеру, при его помощи можно получить кванты механических колебаний, параметры которых зависят от параметров всего двух взаимодействующих во впадине фотонов света. "Будущие системы обработки информации должны включать в себя различные типы носителей информации, которые оптимально подходят для решения той или иной конкретной задачи" - рассказывает Картик Сринивэсан (Kartik Srinivasan), ученый из Научно-исследовательского центра нанотехнологий (NIST Center for Nanoscale Science and Technology), - "Наша разработка как раз и является платформой, которая позволяет выполнить передачу информации от носителей одного типа к носителям других типов".

Источник

Установлен новый рекорд по скорости оптических коммуникационных систем, предназначенных для использования внутри датацентров

Новая подборка новостей мира науки и техники 12-04-2016
информационный центр

Исследователи из Политехнического университета Гонконга (Hong Kong Polytechnic University, PolyU) создали прототип оптической коммуникационной системы, предназначенной для использования внутри информационных центров, которая обеспечивает рекордную на сегодняшний день скорость передачи данных. Продемонстрированная новой системой скорость составляет 240 гигабит в секунду на расстоянии до 2-х километров и это в 24 раза больше скорости, обеспечиваемой лучшими коммерческими системами, доступными сегодня на рынке информационных технологий. При помощи новой системы 10 тысяч человек могут одновременно смотреть видео в формате 4К, и ее возможности позволят людям более широко использовать в своей жизни обработку больших наборов данных, функции виртуальной и дополненной реальности, интерактивного видео и т.п.

В недрах традиционных информационных центров находятся сотни и тысячи связанных между собой высокопроизводительных компьютеров-серверов и специализированных устройств, которые обрабатывают огромное количество данных интернет-трафика и производят огромное количество вычислений. А глобальные сервисы, такие, как Google, Facebook, YouTube и различные "облачные" сервисы "стоят" на множестве информационных центров, расположенных в самых разных уголках земного шара.

С учетом тенденции увеличения количества интернет-трафика, обуславливаемого увеличением объемов передаваемой информации и лавинообразным ростом количества устройств из так называемого Интернета Вещей, разработчикам систем информационных центров всегда необходимо проектировать их с учетов немалого запаса, как по пропускной способности, так и по производительности. И одним из узких мест в таких системах являются коммуникационные каналы, которые связывают в единое целое отдельные части инфраструктуры центра. До самого последнего времени на рынке не имелось решения, которое могла обеспечить "развязку" вышеупомянутого узкого места любым другим методом, кроме экстенсивного, метода банального увеличения количества коммуникационных линий или каналов.

Одной из проблем, которую удалось побороть ученым из Гонконга, является проблема искажений оптического сигнала. Эти искажения возникают в результате многократных отражений и преломления лучей света во время их движения по оптоволоконным кабелям. Естественно, что чем длиннее пройденное по кабелю расстояние, тем большим искажениям подвергается оптический сигнал и тем меньшую скорость передачи информации он может обеспечить.

Новая подборка новостей мира науки и техники 12-04-2016
исследователи из PolyU

Борьба с искажениями оптического сигнала традиционно производится при помощи специализированных аппаратных средств. Кроме этого, для передачи информации на большие расстояния для уменьшения уровня искажений используются достаточно дорогостоящие технологии, такие, как специализированное оптическое волокно. Исследователям из PolyU удалось сделать почти невозможное, они не использовали никаких хитрых аппаратных компонентов, для исправления искажений сигнала ими был разработан комплекс достаточно сложного программного обеспечения.

В настоящее время ученым хорошо известны эффекты влияния отдельных молекул материала оптического волокна на свет. Но на практике, где оптическое волокно состоит из миллиардов миллиардов молекул, ориентированных в пространстве случайным образом, эффекты их влияния на свет становятся неизвестной величиной. Однако, в этом хаосе существуют очень слабые следы порядка, который может быть выдвинут на первый план путем обработки большого объема статистической информации, информации сравнения переданных и полученных данных.

Такой анализ может дать четкую картину суммарных искажений оптического сигнала и, зная эту картину, искажения можно компенсировать достаточно простыми математическими методами при помощи недорогих и проверенных аппаратных средств, собранных на базе не самых мощных микропроцессоров или даже микроконтроллеров.

Своей работой исследователи из PolyU показали, что очень часто для решения сложнейших проблем, связанных с физикой распространения оптических сигналов, совершенно не требуются громоздкие и дорогостоящие аппаратные средства. Вычислительной мощности современных процессоров вполне достаточно для проведения сложных вычислений в режиме реального времени, а оптимизированные алгоритмы, наподобие уже созданных, могут обеспечить даже рекордные значения скоростей передачи информации оптических коммуникационных каналов, в которых отчаянно будут нуждаться информационные центры следующего поколений.

Источник

Ученые определили, насколько медленнее скорости света движутся "закрученные" лучи

Новая подборка новостей мира науки и техники 12-04-2016
закрученная световая волна

Мы уже неоднократно рассказывали нашим читателям о необычных лучах света, поляризация которых закручена подобно спирали штопора. Такие лучи позволяю реализовать новые методы модуляции оптического сигнала, при помощи которых одним лучом можно передавать гораздо большее количество информации, нежели обычным лучом с линейной поляризацией. И эта особенность делает лучи "закрученного" света перспективными кандидатами на их использование в области коммуникаций и квантовых вычислений. Однако, проводя исследования, в которых использовался "закрученный" свет, ученые из университета Оттавы (University of Ottawa) заметили, что такие лучи распространяются медленнее, чем значение константы с (скорость света в вакууме), определенной в рамках теории относительности Альберта Эйнштейна.

Эбрахим Карими (Ebrahim Karimi) и Фредерик Бушар (Frederic Bouchard), ученые из университета Оттавы, экспериментировали с коммуникационной установкой, в которой использовались лучи обычного лазерного света и "закрученные" лучи, на срезе которых были созданы 10 "завихрений". "Результаты экспериментов указывали на присутствие некоторых нестыковок и немного позже мы догадались, что сверхкороткие импульсы света двух разных видов, выпущенные в один момент времени, достигают поверхности датчика в небольшой задержкой друг относительно друга" - рассказывает Эбрахим Карими, - "Закрученный свет оказался медленнее обычного света, и мы быстро нашли объяснение этому факту. Оказывается, что закрученный свет движется не по прямой и, преодолевая определенное расстояние, он проходит чуть больший путь, нежели луч обычного света".

Поняв природу возникновения задержки, ученые приступили к измерению значения этой задержки, которая оказалась равна в их случае десятым частям фемтосекунды (одной квадриллионной доли секунды). В определении значения задержки им помогли ученые-физики, специализирующиеся в области нелинейной оптики, которые предложили использовать для этого метод FROG (frequency-resolved optical gating), обычно применяемый для измерений длительности сверхкоротких импульсов лазерного света.

Используя метод FROG, ученые сравнили скорость распространения обычных лучей света и закрученных лучей. Более того, они выяснили, что увеличение количества "завихрений" замедляет скорость распространения света. С максимальным количеством завихрений, которые способна создать их лабораторная установка, задержка между импульсом обычного и закрученного света составила целых 23 фемтосекунды.

"В области квантовых вычислений и коммуникаций ученые никогда не использовали измерения методом FROG, поэтому они и не подозревали о существовании задержек и о том, что закрученный свет распространяется медленнее обычного света" - рассказывает Эбрахим Карими.

В результате проведенных экспериментов ученые выяснили, что 10-кратно закрученные импульсы света движутся в вакууме на 0.1 процента медленнее, чем импульсы обычного света. Это означает, что скорость их движения равна 299 792 458 метра в секунду, и это является первым разом в истории науки, когда ученые продемонстрировали, что вмешательство в структуру луча света может оказать влияние на его скорость. Взяв за основу идею вмешательства в структуру луча света, ученые рассчитали крайне экзотический вариант, при котором импульс "необычного" света должен двигаться немного быстрее константы скорости света в вакууме. И в самом ближайшем времени они планируют создать установку, в которой будет реализован этот тип вмешательства в структуру света и при помощи технологии FROG измерить величину уже не задержки, а упреждения, которое с учетом длины пути света должно быть равно 1 фемтосекунде.

Источник

Япония включает подземную ледяную "стену", которая оградит аварийную станцию Фукусима

Новая подборка новостей мира науки и техники 12-04-2016
схема подземной ледяной стены

Среди многих проблем, связанных с ликвидацией последствий аварии на японской атомной станции Фукусима, является проникновение радиоактивных материалов в грунтовые воды, которые увеличивают зону радиоактивного заражения окружающей местности и мирового океана. Японское правительство уже давно занималось решением этой проблемы, и буквально на днях будет произведено включение подземной ледяной "стены", которая изолирует под землей аварийную станцию от окружающего мира, сдерживая распространение радиоактивных материалов.

Термин "ледяная стена" походит на нечто из разряда научной фантастики, однако эта технология уже давно используется для ограждения от грунтовых вод подземных туннелей и горнодобывающих выработок. В Японии морская вода, охлажденная до температуры в -30 градусов Цельсия прокачивается через систему трубопроводов, проложенных под землей на глубину до 30 метров. Низкая температура заморозит почву, создав водонепроницаемый ледяной барьер и запечатав четыре реактора станции, поврежденные в 2011 году, подземной стеной, длиной в 1500 метров.

Исследователи не так давно обнаружили образцы радиоактивных материалов в морской воде, взятой недалеко от района станции Фукусима. Это указывает на то, что утечка токсичных радиоактивных материалов в окружающую среду из разрушенных реакторов продолжается и в настоящее время. Рабочие, занимающиеся ликвидацией последствий аварии, уже под завязку заполнили специальные резервуары тоннами ядовитой радиоактивной воды, которая в будущем будет подвергнута процедуре очистки. Но на станции остается немало областей, куда люди и даже роботы не могут получить доступ из-за высокого уровня радиации или в силу других причин. И утечки радиоактивных материалов из этих областей как раз и будут блокироваться ледяной стеной.

Новая подборка новостей мира науки и техники 12-04-2016
трубопроводы для создания ледяной стены

Строительство подземной ледяной стены было начато в 2014 году и оно полностью закончено в настоящее время. Представители правительства Японии дали "зеленый свет" включению установки и она будет активизирована в среду. Стена будет включаться поэтапно, но самая большая часть, на долю которой приходится 95 процентов от всех холодильных элементов, будет включена сразу. В стене будут оставлены промежутки на некоторое время, что позволит поднять уровень грунтовых вод в пределах периметра выше уровня воды, которая стоит в камерах аварийных реакторов.

Помимо ограждения территории аварийных реакторов от окружающего мира, наличие ледяной стены позволит уменьшить наполовину поток грунтовых вод, проходящий через камеры аварийных реакторов. От успеха этого первого этапа будут зависеть сроки и очередность включения оставшихся сегментов подземной стены и это займет, согласно предварительным прогнозам, несколько месяцев.

Источник

Новостной сайт E-News.su | E-News.pro. Используя материалы, размещайте обратную ссылку.

Оказать финансовую помощь сайту E-News.su | E-News.pro


          

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter (не выделяйте 1 знак)

Не забудь поделиться ссылкой

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Комментировать статьи на сайте возможно только в течении 30 дней со дня публикации.