Новая подборка новостей мира науки и техники 20-11-2016 » E-News.su | Cамые свежие и актуальные новости Новороссии, России, Украины, Мира, политика, аналитика
ЧАТ

Новая подборка новостей мира науки и техники 20-11-2016

18:59 / 20.11.2016
1 786
0
Ученые нашли новый способ эффективного отвода и рассеивания тепла в электронике

Новая подборка новостей мира науки и техники 20-11-2016
схема микроэлектронная

Международная группа, возглавляемая учеными из Калифорнийского университета в Риверсайде (University of California, Riverside), разработала новый способ эффективного отвода и рассеивания тепла, выделяющегося во время функционирования полупроводниковых электронных приборов. Высокой эффективности ученые добились путем принудительного изменения энергетического спектра акустических фононов, квазичастиц, состоящих из упорядоченных волнообразных тепловых колебаний атомов материала в кристаллической решетке. А распространение и параметры этих фононов регулировались и ограничивались структурами нанометрового масштаба, изготовленными из полупроводникового материала определенного вида.

В качестве ограничительных наноструктур выступали нанопроводники из арсенида галлия (GaAs), синтез которых выполнила группа исследователей из Финляндии, которая, помимо этого, использовала метод спектроскопии Мандельштама-Бриллюэна (Brillouin-Mandelstam light scattering spectroscopy, BMS) для изучения движения фононов через прозрачные наноструктуры.

Изменяя форму и размеры наноструктур из арсенида галлия, ученые смогли добиться изменений энергетического спектра, дисперсии, акустических фононов так, что эти фононы обеспечили максимально эффективный перенос тепла от места его выделения к месту его рассеивания. Такая возможность является ключевым моментом в деле разработки наноразмерных электронных устройств, ведь зачастую большое количество выделяющегося тепла не дает инженерам возможности дальнейшего сокращения размеров устройства. Помимо этого, управление фононами позволяет направить их в области термоэлектрических преобразователей, которые будут превращать его назад в электрическую энергию, которую можно будет использовать повторно.

"В течение нескольких лет единственным методом изменения удельной теплопроводности электронных устройств заключался в использовании наноструктур-проводников фононов, имеющих определенные границы и интерфейсы. Мы же экспериментально продемонстрировали возможность изменения параметров фононов, которые передвигаются быстрее и которые могут двигаться в заданном направлении без дополнительных элементов-теплоотводов" - рассказывает Александр Баландин, профессор из Калифорнийского университета, - "Наша работа может стать основой для технологий, позволяющих создавать полупроводниковые материал, имеющие заранее заданные тепловые и электронные свойства, которые, в свою очередь, станут основой электронных приборов нового поколения".

Источник

Созданы квантовые биты, представляющие собой электронные дырки в кристалле селенида цинка

Новая подборка новостей мира науки и техники 20-11-2016
фотон и кубиты

Работа всех современных компьютеров построена на законах классической физики, синхронное движение миллиардов электронов или его отсутствие определяют значение информационного бита, 1 и 0 соответственно. В квантовых компьютерах, работа которых базируется на законах квантовой физики, в качестве квантовых битов могут использоваться отдельные электроны, которые могут находиться в состоянии 1, состоянии 0 и в состоянии квантовой суперпозиции, 1 и 0 одновременно. Именно это третье состояние отличает принципы работы квантовых вычислительных систем от традиционных и придает им их уникальные функциональные возможности.

Электрон, помимо вращения вокруг ядра атома, всегда вращается вокруг собственной оси, направление этого вращения называют спином электрона и именно этот параметр является носителем квантового состояния и квантовой информации, записанной в электрон-кубит. Но, ученые обнаружили, что электронные дырки, места в кристаллической решетке полупроводникового материала, где отсутствует один из электронов, так же могут вращаться и обладать своим собственным спином.

Селенид цинка является материалом с упорядоченной кристаллической решеткой. В этот полупроводниковый материал достаточно легко вводится примесь теллура, элемента близкого по свойствам к селену. Наличие атома теллура вместо атома селена в кристалле селенида цинка приводит к образованию стабильной электронной дырки, которые располагаются в кристалле словно пузырьки в стакане газировки.

Окружение из кристаллического селенида цинка ограждает электронную дырку от нежелательного влияния некоторых факторов окружающей среды, что позволяет основанному на ней кубиту хранить квантовую информацию достаточно длительное время, требующееся для проведения квантовой обработки и считывания данных.

Группа профессора Себастьена Франкера (Sebastien Francoeur) добилась значительных успехов в реализации технологии манипуляции информации, записанной в квантовых битах на основе электронных дырок в среде кристалла селенида цинка. Они использовали свет лазера для того, чтобы откалибровать систему на точное местоположение электронной дырки и записать в нее необходимую квантовую информацию. Для проведения вычислительных и логических операций над записанной информацией использовался луч света еще одного лазера с отличными от первого параметрами. И считывание результата обработки производилось при помощи света еще одного лазера, фотоны которого возбуждали электронную дырку и она начинала излучать собственные фотоны.

Другими словами, ученым удалось добиться устойчивой передачи квантовой информации от стационарных кубитов (электронных дырок) к летящим кубитам (фотоны света) и наоборот. Эта новая технология, в которой использованы некоторые новые типы взаимодействий материи со светом, позволяет инициализировать кубиты быстрее, нежели другие подобные методы. Для передачи данных от стационарного к летящему кубиту и наоборот требуется время, не превышающее сотни пикосекунд, миллиардных долей секунды.

И в заключении следует отметить, что до того момента, пока на основе кубитов из электронных дырок смогут быть созданы квантовые коммуникационные устройства или вычислительные системы, ученым предстоит проделать еще массу работы. И самой сложной задачей, над которой уже начала работу группа профессора Франкера, является реализация прямых взаимодействий между отдельными кубитами, что позволит такой системе выполнять достаточно сложные алгоритмы квантовой обработки информации.

Источник

Золотые ДНК-нанопроводники позволят собрать генетические компьютеры

Новая подборка новостей мира науки и техники 20-11-2016
ДНК-нанопроводники

В некотором роде люди являются сложнейшими живыми компьютерами, состоящими из отдельных клеток. Создание подобного искусственного "живого" компьютера является пока лишь предметом научной фантастики, но некоторые группы ученых, включая ученых из института Helmholtz-Zentrum Dresden-Rossendorf, Германия, уже достаточно давно работают в данном направлении. И не так давно группе, возглавляемой Безу Тешоме (Bezu Teschome) и Артуром Эрбе (Artur Erbe), удалось найти способ нанесения золотого покрытия на нанопроводники, изготовленные из отрезков молекул ДНК. А в дальнейшем, используя такие крошечные токопроводящие элементы, можно будет собирать сложнейшие схемы генетического компьютера, состоящего из одной или сплетения нескольких длинных молекул ДНК.

"Главным преимуществом использования ДНК является то, что при ее помощи можно быстро создавать очень сложные схемы на наноразмерном уровне" - рассказывает Артур Эрбе. Создание сложных схем является возможным благодаря технологии, называемой ДНК-оригами, которая позволяет создавать сложные пространственные структуры путем контролируемого и программируемого процесса самосборки. Данная технология была разработана учеными из США более десятилетия назад и в ней используется распутанная эталонная молекула ДНК, вдоль которой из набора коротких участков формируется вторая молекула.

Управление последовательностью сборки длинной молекулы ДНК из коротких отрезков осуществляется путем добавления в раствор ионов определенных химических элементов и регулирования температуры раствора. Использование точного регулирования указанных выше и других параметров процесса позволяет создавать из ДНК двух- и трехмерные объекты любой сложной формы.

"В данном случае мы создали из ДНК своего рода нанотрубки" - рассказывает Безу Тешоме. Эти нанотрубки являются совсем крошечными, их длина не превышает 30 нанометров. Для сравнения, размер красной кровяной клетки, эритроцита, составляет 7000 нанометров, а вирус Эболы имеет длину 1500 нанометров и ширину - 50 нанометров.

Затем, при помощи молекул определенных химических соединений, ученые расположили вдоль нанотрубок золотые наночастицы, которые были "сварены" друг с другом при помощи ионов золота. Этот этап работы был достаточно прост из-за того, что золото очень хорошо сочетается с молекулами многих органических соединений, включая молекулы ДНК. Но покрытие ДНК золотом было решением половины проблемы. Гораздо труднее оказалось соединить все это с внешними электродами, через которые на получившийся нанопроводник можно подавать электрический ток.

При помощи высокоточного микроскопа ученые определили положение концов нанопроводника. Используя другую технологию, они подвели к концам этого нанопровдника электроды, размеры которых исчисляются десятками нанометров. В процессе подключения к концам нанопроводника путем осаждения на них дополнительного материала эти электроды увеличились в размере до микронного масштаба, что во много раз увеличило удобство подключения к ним измерительной техники.

Проведя измерения, ученые определили, что золотые ДНК-нанопроводники способны проводить электрический ток достаточно большой для их размера силы. А в будущем эти же ученые собираются разработать технологию создания проводников со сложной структурой, имеющих по нескольку ответвлений, при помощи которых можно будет соединять большое количество компонентов, изготовленных из тех же молекул ДНК.

Источник

Создан самый тонкий фотодетектор на сегодняшний день

Новая подборка новостей мира науки и техники 20-11-2016
схема фотодетектора

Ученые из Центра физики интегрированных наноструктур (Center for Integrated Nanostructure Physics), работая вместе с учеными из Института фундаментальных наук (Institute for Basic Science, IBS), разработали структуру самого тонкого в мире фотодатчика на сегодняшний день. Этот датчик, который служит для преобразования энергии света в электрический ток, состоит из двух слоев графена, между которым зажат слой дисульфида молибдена, и он имеет толщину в 1.3 нанометра, в десять раз меньше, чем размеры самых маленьких кремниевых фотодиодов. Благодаря малым размерам, такие датчики могут быть использованы в устройствах Интернета Вещей, в сверхминиатюрной электронике и в фотоэлектронике.

Несмотря на многие замечательные параметры, графен обладает одним недостатком, этот материал обретает полупроводниковые свойства только под воздействием ряда определенных факторов, что сужает область его применения в чистом виде в электронике. Поэтому ученые решили "разбавить" графен материалом, имеющим ярко выраженные полупроводниковые свойства. Они поместили слой дисульфида молибдена между двумя слоями графена и расположили все это на поверхности кремниевой подложки.

Изначально ученые сомневались в том, что столь тонкое устройство вообще сможет произвести какой-либо электрический ток за счет фотоэлектрического эффекта. "Устройство, имеющее только один слой дисульфида молибдена, не может рассматриваться, как обычный p-n переход, где положительные и отрицательные заряды отделены друг от друга и создают внутреннее электрическое поле" - рассказывает Ю Ву Джонг (YU Woo Jong), ведущий исследователь, - "Однако, когда мы осветили изготовленную нами структуру, мы обнаружили фотоэлектрический ток достаточно большой силы. Это является удивительным фактом, ведь этот ток произведен не обычным p-n переходом и все это нуждается в дополнительных исследованиях".

Проводя дополнительные исследования, ученые сравнили работу двух фотодетекторов, с одним слоем дисульфида молибдена и семью слоями. Как и следовало ожидать, устройство с семью слоями оказалось способно поглощать большее количество света, нежели устройство с одним слоем, однако последнее имело более высокую чувствительность и скорость реакции на изменения светового потока. Более того, устройство с семью слоями поглощало свет в более широком диапазоне. Однако дальше ученые наткнулись на своего рода парадокс - устройство с одним слоем дисульфида молибдена оказалось способным вырабатывать в семь раз больший электрический ток, нежели более толстое устройство.

Ученые объясняют обнаруженный парадокс тем, что возникновение фотоэлектрического тока в данном случае можно объяснить не с точки зрения классического электромагнетизма, а с точки зрения квантовой механики. Для преодоления потенциального барьера между слоями дисульфида молибдена и графена, возбужденные светом электроны используют эффект квантового туннельного перехода. И, естественно, чем больше толщина устройства, тем сложнее электронам становится совершить квантовый туннельный переход.

"Созданное нами устройство прозрачно, гибко и для его работы требуется меньшее количество энергии, чем для традиционных фотодетекторов на базе кремниевых полупроводников" - рассказывает Ю Ву Джонг, - "Если наши дальнейшие исследования пройдут успешно, то в руки людям попадет совершенно новый тип фотоэлектрического преобразователя, на базе которого можно будет делать высокочувствительные матрицы для скоростных камер, высокоэффективные солнечные батареи и многое другое".

Источник

Ученые создали первое микроэлектронное устройство, не содержащее компонентов из полупроводниковых материалов

Новая подборка новостей мира науки и техники 20-11-2016
микроэлектронное устройство

В основе всех используемых в современной электронике приборов лежат компоненты, изготовленные из полупроводниковых материалов различных типов. Но возможности данных технологий начинают приближаться к физическим пределам и ограничениям, что, в свою очередь, может нарушить известный закон Гордона Мура, который говорит о том, что количество транзисторов и вычислительная мощность микропроцессоров должны удваиваться каждые два года. В поисках альтернативы полупроводниковым технологиям исследователи из Калифорнийского университета в Сан-Диего разработали то, что является первым в мире микроэлектронным устройством, не содержащим полупроводниковых материалов. И дальнейшее развитие данной технологии может привести к разработке быстродействующей микроэлектроники нового типа, высокоэффективных солнечных батарей и многого другого.

В своей работе исследователи заменили электроны, движущиеся в объеме полупроводниковых материалов свободными электронами, движущимися в пространстве. Эта технология во многом подобна первым электронным радиолампам за исключением того, что она реализована на наноразмерном уровне. Однако, высвобождение электронов из материала является достаточно тяжелым делом, оно требует применения высокого электрического потенциала, высокой температуры или света высокоэнергетических лазеров. И ни один из перечисленных методов не подходит для практического использования в микроэлектроники в силу различных причин.

Исследователи разработали устройство, способное испускать свободные электроны без необходимости применения каких-либо экстремальных воздействий. Основу этого устройства составляет золотая метаповерхность с наноструктурированной формой, которая состоит из чередующихся золотых полос и структур, имеющих форму гриба с ножкой и шляпкой. Все это находится на поверхности кремниевой подложки, покрытой изолирующим слоем из диоксида кремния.

Когда на элементы этой поверхности подается низкое, порядка 10 Вольт, электрическое напряжение, и на ней фокусируется свет низкоэнергетического инфракрасного лазера, на ней возникают так называемые "горячие точки", области с высокой напряженностью электрического поля. Энергии этого поля достаточно для того, чтобы извлечь электроны из материала и отправить их в свободный полет в окружающее пространство. Следует отметить, что за счет некоторых явления такая поверхность сама по себе создает облако свободных электронов, но при активизации вышеописанным способом плотность этого поля и электронная проводимость устройства возрастают минимум в тысячу раз.

"Это устройство, без сомнений, не сможет заменить полупроводниковые приборы всех имеющихся на сегодняшний день типов. Но на его основе уже сегодня можно будет создать альтернативу полупроводникам, использующимся в силовой электронике или в высокочастотной технике" - рассказывает Дэн Сивенпипер (Dan Sievenpiper), профессор электротехники из Калифорнийского университета, - "Теперь нам предстоит выяснить, насколько мы сможем улучшить параметры таких устройств и насколько велики могут быть значения их некоторых характеристик".

Созданное калифорнийскими исследователями микроэлектронное устройство, структура которого показана на приведенном выше снимке, является лишь доказательством работоспособности всех использованных учеными принципов и решений. И, вполне вероятно, что создавая метаповерхности различных типов и структуры, у ученых в будущем получится создать аналоги всех видов современных полупроводниковых устройств или приборов.

Источник

Новостной сайт E-News.su | E-News.pro. Используя материалы, размещайте обратную ссылку.

Оказать финансовую помощь сайту E-News.su | E-News.pro


          

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter (не выделяйте 1 знак)

Не забудь поделиться ссылкой

Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь.
Мы рекомендуем Вам зарегистрироваться либо войти на сайт под своим именем.
Информация
Комментировать статьи на сайте возможно только в течении 30 дней со дня публикации.